Tutorial by Example—Issue 1A

Copyright, Peter H. Anderson, Baltimore, MD, Jan, ‘01
Introduction.

Thisisthe third distribution of sample C routines to those people who have purchased the PIC16F87X Dev Package.
However, | did not merge thisinto the previous material for a number of reasons; my laziness, and my feeling that many
people may have printed out the previous and may be inconvenienced in again printing out a new version and then trying
to find the additions.

Thus, the previous discussion will betermed Issue 1. Additionswill be 1A, 1B, etc. If | ever get the energy to merge all
of the additions, this will become Issue 2.

Thezip fileincludes al files, both those previoudy distributed aong with the new ones.

This distribution deals briefly with bit fields, unions and a technique for using a potentiometer in conjunction with an A/D
converter and EEPROM to adjust and set a value. Interfacing with devices using the Motorola SPI protocol istreated in
considerable detail. Asaways, | was not able to do as much as | had hoped.

And, try as| might, | am sure there are more than afew errorsin this discussion. Note that all routines have been tested,
but files can get mixed up.

In developing prior material, only one irresolvable problem was encountered. | was unable to implement awrite to the
data EEPROM using interrupts

In this distribution, two confidence breakers were encountered, whichisin part why | didn’t get more done. These are
noted in the discussion, but, briefly;

1. Program UNION_1.C compiles under PCW. However, when compiling in MPLAB, MPLAB hangs. | saw this
problem at a recent workshop and also a posting on the PICLIST describing the same problem.

2. InProgram TLC2543 2.C, | found that arrays of longs were not being properly handled in afunction.

Both of these problems are disconcerting. | have been teaching for close to 20 years and scarcely a day goes by that |
don’'t see some amazingly weird thing. However, | have found that over time | find the answer. But, often thisis later
rather than sooner.

The next distribution will be on or about Feb 20. School isagain in session and | have less flexibility. | try to assign
problems that permit me to refine some routines in teaching my students and | have many students and workers on a
number of different projects. Thus, right now, | am uncertain just what will be in the next distribution.

Bit Fields.

Assume you are using PORTD with bits 0 — 3 as outputs for one task and bit 4 as an output for another task and bits5—7
for yet another. Dealing with the single output on bit 4 isrelatively simple;

portd4 = 1; // turn on LED on bit 4

However, dealing with the three upper bits can result in code that looks a bit confusing. For example, assume the variable
nin the range of 0 - 5isto be displayed on output bits5 -7,

PORTD = (PORTD & Ox1f) | (n << 5);

Note that the upper three bits of PORTD are zeroed and thisis then ored with variable n shifted |eft by five places.
Variable n must be shifted left 5 places so asto align with bits 5 - 7 of PORTD.

Modifying the low four bits;
PORTD = (PORTD & Oxf0) | m
An alternative which can greatly simplify thingsisto use bit fields;

struct PORTD BI TS

{
byte FOUR LEDS : 4; /1l bits 0 - 3
byte ONE_LED : 1; /1l bit 4
byte THREE LEDS: 3; /1l bits 5, 6, 7
1

struct PORTD BITS portd bits; // global as opposed to passing to functions
This permits bit 0 — 3 to be referred to as portd_bits. FOUR_LEDS and bits 5 — 7 as simply portd_bits THREE_LEDS.

The above examples are implemented as;

portd_bits. THREE LEDS = n;
PORTD = portd_bits;

Note that the order of declaring bitsin the structureis critically important. Low bits to high bits.
It is aso the usersresponsibility to assure the variable is limited to the size declared in the structure. For example;

m= 17,
portd_bits. FOUR LEDS = m

Note that thiswill cause an undesired change in bit 4. as five bits are required to store the number 17.
| haven't really investigated the matter, but | assume that athough the use of bit fields make the C code appear more

compact, the amount of code required is marginally more than manipulating bits with andsand ors. However, thisis not
an issue until one runs out of memory.

/1 BITS 1.C
/1
/Il lllustrates the use of bit fields.

/1

/1 Configuration - LEDS (8) on PORTDO - PORTD?

/1

/1 Each 250 ns, inverts the state of the LED on PORTD4 and di splays a three bit

/1 count (0 — 5) on PORTD5::7. At the end of the sequence, the nunber of tines the
/1 for loop has been executed is displayed on LEDs on bits 0 — 3.

/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '01
#case
#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

struct PORTD BITS

byte FOUR LEDS : 4; /1l bits 0 - 3
byte ONE_LED : 1; /1l bit 4
byte THREE_LEDS: 3; [/l bits 5, 6, 7

b
struct PORTD BITS portd bits; // global as opposed to passing to functions

voi d mai n(voi d)

{

pspnode = O;

portd_bits = 0x00;
PORTD = portd_bits;

TRI SD = 0x00; /1 all outputs

whi |l e(1)
{
for (n=0; n<6; n++)
{
portd bits. ONE LED = !portd bits.ONE_ LED;, // toggle bit 4
portd_bits. THREE LEDS = n;
PORTD = portd_bits;
del ay_ns(250);

}
portd bits. FOUR LEDS = my // display the nunber of tines the |oop is executed
PORTD = portd_bits;

++m
if (m== 16) /1 Iimt the variable to 0 - 15
{

}

m = O;

}

#i ncl ude <l cd_out.c>

Unions.

Caution. At arecent workshop, one participant had afrustrating problem where the program compiled under PCW.
However, compiling in MPLAB, caused MPLAB to hang. | have had the same problem with the file UNION_1.C. |
have scanned the file again and again to assureit is free of avirus and tried to run the program again and again, without
success. | noted a posting on the PICLIST precisely describing asimilar problem the very same problem which left me
feeling a bit better in a perverse sort of way.

Asl say, | have scanned the file for viruses, but you might wish to use caution. If you can figure out the problem, | would
like to say, you win $10,000. But, | can't afford to do that. But, it sureis frustrating.

Theideaof unionsisto use the same RAM addresses to share variables. One application isto use the address space in
one task and then reuse the address space in another task where the variables in one task are not used in the other. This
could be abig pluswith a PIC, particularly when using an array in atask.

The amount of memory allocated to the union is the size of the largest element. Thus one might declare aunion as
consisting of an array of 30 bytes and a structure consisting of five byte variables. Thirty bytes will be allocated for the
union.

Another application of unionsisin dealing with longs (16-bits) and the high and low bytes. An exampleis combining
ADRESH and ADRESL into a 16 bit ad_val.

In the following, note that union LONG consists of along and astruct TWO _BYTES. Thus, ad val.w refersto the entire
16 bit quantity and ad val.b.h and ad_val.b.| refer to the high and low bytes.

Thus, such code as;

ADRESH,
ad_val << 8 | ADRESL;

ad va
ad va

May be simplified as;

ad val.b.h
ad val . b. |

ADRESH
ADRESL,;

The entire quantity may then be referred to asad_val.w. However, note that thisworks only if the order of definitionsin
struct TWO_BY TES isdeclared in the order shown; low byte first..

Note that | opted to use a structure to define the high and low bytes, but | often see this done with atwo byte array.

Infact, | don't tend to use unionsin my programming. Usualy, | am too eager to dig into the problem to fool with this,
but the idea that you can do thisisinteresting.

/1 Program UNION 1.C

/1

/1 1llustrates the use of a union to such that a long and two bytes share
/1 the same menory space.

/1

/] Peter H Anderson, Baltinore, MD, Jan, 'Ol

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

struct TWO BYTES

byte I;
byte h;
1
uni on LONG
{
unsi gned long w,
struct TWO BYTES b;
b

unsi gned | ong make_ad_meas(voi d);

voi d mai n(voi d)

{
uni on LONG adval ;
lcd_init();
adval . b. h = 0x01;
adval . b. 1 = 0x80;
printf(lcd_char, "% x", adval.w);
adval . w = make_ad_neas();
lcd clr_line(l);
printf(lcd_char, "%x", adval.w);
whi | e(1) /* loop continually */
}
unsi gned | ong nmake_ad_neas(voi d)
{
uni on LONG x;
X.b. h = 0x02; /1 high byte
X.b.l = 0x80; /1 | ow byte
return(x.w; /1 the whol e thing
}

#i nclude <l cd_out.c>
Program CALIB.C.
In many applications, it is desirable to permit the user to set a quantity which is then saved to EEPROM.

For example, | recently devel oped a temperature measurement system for agricultural grain bins by measuring the forward
voltage across adiode. Cables consisting of eight diodes spaced some six feet apart had aready been instaled in the bins.
| was concerned with that diodes may well vary from one to another and thus decided to use a calibration potentiometer to
permit the end user to "tweak" the measurement by -10.0 to 10.0 degrees.

The concept isthat on boot, the A/D associated with the potentiometer isread and if it is near ground (adval < 23), the
value previously stored in EEPROM is used in all subsequent calculations. However, if, on boot, the A/D valueis above
ground (adval >= 23), the adval iswritten to EEPROM, but the A/D isread and this valueis used in all subsequent
calculations. Thus, in my case, the user may adjust the potentiometer until the temperature values measured by my
system agreed with some reference they might have available. Once satisfied, they would leave the potentiometer at that
setting and reboot the processor. The processor would then read the A/D and on finding it is above ground, would write
this valueto EEPROM. The user would then turn power off and either set the pot to itslow value or replace it with a
ground. On all subsequent boots, the processor reads the pot A/D and on finding it near ground, it uses the value
previoudy stored in EEPROM.

Note that A/D valuesin the range of 0 - 22 are not valid calibration values, leaving 1001 values in the range of 23 to 1023.
The actual value of the parameter you are adjusting may be cal cul ated;

g = ((float)(adval - 23)) /1000.0 * (highest - |owest) + |owest;
For example, in the example below, where the thermostat settings may be set between -40 and 150;
g = ((float)(adval - 23))/1000.0 * (150.0 - (-40.0)) + (-40.0)

This general idea might be adapted to any similar measurements or it might be used to permit the user to set thermostat
trip points or to adjust the duty cycle of a PWM output or to set the period of a PIC output.

Using a potentiometer in conjunction with the PICs A/D convertersisinexpensive and is far easier for the end user than
asking that they interface the PIC circuit with alaptop to set data which is peculiar to their installation.

/Il CALIB.C
/1
/1 On boot, reads the value of a potentioneter on AAD CH 0. If near ground,

/1 uses a value previously stored in EEPROM and i gnores the potentioneter.

/1 QGtherwise, wites the potentiometer value to EEPROM but uses potentioneter
/1 val ue.

/1

/1 In this exanple. the potentioneter is used to set a thernostat trip point
/1 in the range of -40.0 to 150.0 degrees.

/1

/1 copyright, Peter H Anderson, Jan, 'Ol

#case
#devi ce Pl C16F877 *=16 | CO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

#define TRUE !0
#defi ne FALSE 0O

unsi gned | ong neas_pot (voi d);
float cal c_therm set(unsigned | ong adval);

voi d save _to_eepron(byte adr, byte *p_dat, byte num bytes);
void read fromeeprom byte adr, byte *p_dat, byte num bytes);
byte read _data_eepron{byte adr);

void wite data _eepron(byte adr, byte d);

voi d mai n(voi d)

{
byte use_eeprom fl ag;
| ong adval ;
float T_F;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lcd_init();
adval = meas_pot (); /1 read calibration potentiomneter
if (adval < 23) /1 if near ground, use the value stored in eeprom
{
use_eeprom flag = TRUE
}
el se
{
/! save pot val to EEPROM but use potentiometer for the value
save_to_eeprom(0x30, (byte *) &adval, 2);
use_eeprom flag = FALSE
}
whi | e(1) /1 continually
{
if (use_eepromflag)
{
read_from eepron{0x30, (byte *) &adval, 2);
}
el se
{
adval = neas_pot ();
}
T F = calc_therm set (adval);
lcd clr_Iine(0);
printf(lcd_char, "T_F = 938.2f", T_F);
del ay_ns(500);
}
}
unsi gned | ong meas_pot (voi d)
{

unsi gned | ong adval ;

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;
del ay_10us(10); /1 a brief delay

adgo = 1;
whi | e(adgo) ; /] poll adgo until zero
adval = ADRESH

adval = adval << 8 | ADRESL;

return(adval);

}
float cal c_therm set(unsigned | ong adval)
{
float T_F;
unsigned long x; // internediate variable
if (adval < 23)
{
T_F = -40.0;
}
el se
{
TF = ((float) (adval - 23)) * 190.0/1000.0 - 40.0;
return(T_F);
}

voi d save_to_eeprom byte adr, byte *p_dat, byte num bytes)
{

byte n;

for (n=0; n<num bytes; n++)

{
wite_data_eepron{adr, *p_dat);
++adr ;
++p_dat ;

}

}

void read fromeeprombyte adr, byte *p _dat, byte num bytes)
{

byte n;
for (n=0; n<num bytes; n++)
{
*p_dat = read_data_eepron{adr);
++adr ;
++p_dat ;
}
}
byte read_data_eepron{byte adr)
{
byte retval;
eepgd = 0; /1 sel ect data EEPROM
EEADR=adr ;
rd=1; /1 set the read bit

retval = EEDATA,
return(retval);

/1

-40 to 150 degrees

void wite data eepron{byte adr, byte d)

{
eepgd = 0; /1 sel ect data EEPROM
EEADR = adr;
EEDATA = d;
wen = 1; /1l write enable
EECON2 = 0x55; // protection sequence
EECON2 = Oxaa;
w = 1; /1 begin programm ng sequence
del ay_ns(10);
wen = 0; /1 disable wite enable
}

#i ncl ude <l cd_out.c>

Interfacing with SPI Devices, (M aster).

This section illustrates using the PIC as amaster in controlling such SPI devices as the Microchip 25L C640 EEPROM,
Maxim MAX7219 7-Segment LED Display Controller, Texas Instruments TLC2543 11-channel 12-bit A/D and the new
Microchip MCP3208 8-channel 12-bit A/D.

Note that none of these devices were supplied with the PIC16F87X Development Package. All are available froma
number of sourcesincluding @ Note that the 7-segment LEDs used with the MAX7219 7-seg LED Driver are common
cathode. | have both MAN74 (0.3 inch) and Ligitek LDS8151-10 (0.8 inch) 7-segment LEDs and will provide a number of
schematics illustrating the connections of the MAX7219 to the LEDs.

The MSSP Moduleis discussed in Section 9 of the PIC16F87X Data Sheet.

The SPI interface consists of three common leads which are multipled to all devices on the bus and a unique select lead
for each device asillustrated below.

Pl CL6F877 2410640 TLC2543 MCP3208 MAX7219
RC5/SDO (term 24) ----- Sl (5)------ DIN (17)----- DIN (11)---->DIN (term 1)
RC4/SDI (term 23) <----S0 (2)------ DOUT (16)----DOUT (12)

RC3/SCK (term 18) ----- SCK (6)----- CLK (18)----- CLK (13)---->CLK (term 13)
RB5 (term38) --------- /CS (1)

RB4 (term37) --------cm-mmmmmmmom - / CS (15)

RB3 (term36) ----------mmmmmm e / CS (10)

RB2 (term35) -----mommmm e oo > /CS (term 12)

This configuration was used in debugging all of the following routines. Having two different A/D converters on the same
bus probably isn't al that practical, but one might, otherwise, use such a configuration for logging data and displaying
data using the MAX7219.

http://www.phanderson.com/ordering.html

Note that all outputs from the devices, identified as SO or DOUT are wire ored together. When adeviceis not selected
it's ouput isin a high impedance state. When the device is selected, the output is normal logic; hard logic one or zero.
Thus, only one device may be selected at atime.

For al of the above devices, adeviceis selected by bringing it's/CSlead low. (I know only of one device, aDallas
DS13XX Rea Time Clock, where the deviceis enabled with alogic one). | have frequently gotten myself into trouble by
leaving the /CS for devices | am not using in a high impedance input mode only to discover that one of the devices on the
bus other than the one | was addressing was active. That is, a high impedance may not be adequate to maintain a device
in the inactive mode. Thus, either use pullup resistors to +5VDC on the CS |leads or be sure to bring the CS leads
associated with al inactive devices high.

Each communications sequence begins by first selecting the device and then transferring eight bits out on SDO while
receiving aso receiving bits on SDI. The sequence may be simply one byte or it may be multiple bytes, but each
sequenceisterminated by "deselecting” the device.

A "bit-bang implementation of the 1/O sequence is shown below;

byte spi _io(byte spi_byte)
{

byte n;
for(n=0; n<8; n++)
{
if (spi_byte & 0x80) /* nost sign bit first */
{
SDO PIN = 1;
}
el se
{
SDO PIN = 0;
}
SCK_PIN = 1;

spi _byte = (spi_byte << 1) | SDI _PIN,
SCK_PIN = 0;
}
return(spi _byte);
}

Note that spi_byte is passed to the function. SDO_PIN is brought to the state of the most significant bit and thisisread by
the slave when SCK_PIN is brought high. spi_byte isthen shifted to the left and the state of SDI isinserted in the least
significant bit position. The next bit is then clocked out on SDO and the state of SDI is placed in the least significant bit
position. Thus, at the end of the eight bit sequence, a byte has been output and the byte which was read is now in spi_byte
which isreturned to the calling function. Thus, the nature of the SPI busis one of 8-bit transfers.

Although this function implies that a useful byte is being sent and a useful byteis being received, this usually is not the
case. For example, abyte may be output to configure the 24L.C640 EEPROM, but no useful dataisreceived. Or, in
reading a byte from the EEPROM, the byte which is sent is useless to the 24L C640. In the case of the MAX7219 Display
Driver, no datais returned to the PIC and thus the byte which is read by the PIC is junk.

However, in the case of the TLC2543 and MCP3208 A/Ds, useful datais both sent to and received from the A/D in the

same byte. (| assume the speed advantage of the SPI over the Philips 12C isrelated to the fact that with the SPI thereis
no "start", "address" and "stop" and data may be both sent and received at the same time.)

10

The user must configure the directions of the SDO, SDI and SCK terminals and the set the idle state of the clock.

void 25 640 setup_SPI (voi d)

{
SDI DR = 1; /1 configure SDI as input, SDO and SCK as outputs
SDO DIR = 0;
SCK_DIR = 0;
SCK PIN = 0; /! be sure clock is at zero
}

In this case, the idle state of the SCK is zero, the data is read by the dave on the rising edge of the clock and the datais
read by the master when the clock ishigh. All of these may vary from one device to another. For example, with the
Microchip MCP3208, the clock idles high, datais read by the 3208 on the rising edge of the clock and output to the
master on the falling edge. With the bit-bang approach, all of thisis simply a matter of dightly modifying the above two
routines. When using the PIC's SSP Module, these parameters are configured using the "ckp", stat_cke and stat_smp bits.
But, whether using the bit-bang approach or the SSP module, recognize that if there are multiple devices on the bus, the
formats may differ.

In summary, the SPI bus uses three leads, SDO, SDI and SCK which are multipled from one device to another on the bus.
A unique chip select is associated with each SPI slave device and only one device may be selected. A sequence begins by
selecting the device, sending and receiving one or more bytes and then "deselecting” the device.

The byte transfer may be bi-directional. Theidle state of the clock (SCK), when the slave reads the master's output (SDO)
and when the slave buts data on the master's input (SDI) may vary from one device to another.

Program 25_640BB.C.

Thisroutine illustrates an interface with the Microchip 25L C640 EEPROM using a "bit-bang" implementation of the SPI
protocol.

To guard againgt accidental writes to the EEPROM, the device is addressed (rb4 = 0) and a single byte write enable code
(WREN) and the deviceisthen "deselected". The EEPROM is again addressed and a write command code is sent,
followed by the high byte of the EEPROM address, the low byte of the address and then, the actual data. The sequenceis
then ended by bringing the /CS back to logic one. A 5 msdelay isrequired to assure the datais burned into EEPROM.

Datais read by selecting the device, sending a read command code, followed by the high and low bytes of the EEPROM
address. At this point, any byte may be clocked out and the data value is read.

/1 25_640BB. C

/1

/1 1llustrates the interface with M crochip 25LC640 EEPROM (SPI) using a bit bang
/1 inmplenmentation. This is useful for PICs not having an SSP interface or in
/1 applications where the SSP nodul e is used for other purposes.

/1

/1 Uses single byte wite and read. Wites 10 val ues beginning at |ocation
/1 0x0700 and then reads back the val ues and di spl ays them on the LCD

/1

/1 Note that although the PIC terminals which are used are the sane as the
/1 SSP nmodul e, any term nals nay be used when using this bit bang approach
/1

/1 Pl C16F877 25L.C640

11

/1

/] RC5/SDO (term24) ----------mnmn------ > S| (termb5)
/1 RCAISDI (term23) <---------mommonnon-- SO (term 2)
/1 RC3/SCK (term18) ------------------- > SCK (term 6)
/] RB4/CS (term37) -----------mmm-omm- > /CS (term 1)
/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '01
#case
#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

#defi ne SPI _WREN 0x06 /1 various 24LC640 conmand codes defined
#defi ne SPI _WRI TE 0x02
#def i ne SPI _READ 0x03

#define SCK DIR trisc3 /1 SPI termnals defined
#define SDO DIR trisch

#define SDI_DIR trisc4

#define CS DI R 25640 trish4

#defi ne SCK_PIN portc3
#def i ne SDO _PI N portch
#define SDI _PIN portc4
#define CS_PIN 25640 rb4

void _25 640 _setup_SPI (voi d);
void _25 640 wite_byte(unsigned long adr, byte dat);

byte 25 640 read_byte(unsigned | ong adr);
byte spi _io(byte spi_byte);

voi d mai n(voi d)

{
byte n, dat;
unsi gned long adr
lcd_init();
CS _PI N 25640 = 1; /1 Chip Select at |ogic one
CS DI R 25640 = O0; /1 out put

25 640_setup_SPI();

I cd_cursor_pos(0, 0);
for (n=0, adr = 0x0700; n<10; n++, adr++)

25 640 wite_byte(adr, n+10); /1 wite 10, 11, 12, etc
lcd_char('!"); /1 to see that something is happening

}

for (n=0, adr = 0x0700; n<10; n++, adr++)

dat = 25 640 read _byte(adr);
lcd clr_line(l);
| cd_dec_byte(dat, 2); /1 and displ ay
del ay_ns(250);

}

whi | e(1) ; /1 continual |oop

void 25 640 setup_SPI (voi d)

{

}

SDI DR = 1; /1 configure SDI as input, SDO and SCK as outputs
SDO DIR = 0;

SCK_DIR = 0;

SCK PIN = 0; /1 be sure clock is at zero

void 25 640 wite byte(unsigned |long adr, byte dat)

{

}

byte dumy;

CS_PI N_25640 = 0; /1 CS |ow

dunmy = spi _i o(SPI _WREN) ;

CS _PI N 25640 = 1; /1 CS high - end of WREN sequence
CS_PI N 25640 = 0; /1 begin another session - 4 bytes
dunmy = spi _i o(SPI _WRI TE)

dunmy = spi _io((byte) (adr >> 8)); /1 high byte of adr

dunmy = spi _io((byte) adr); /1 low byte of address

dunmy = spi _io(dat); /1 data

CS_PI N 25640 = 1;

delay ms(5); // allowtine for programm ng EEPROM

byte 25 640 read_byte(unsigned | ong adr)

{

}

byte dummy, dat;

CS _PI N 25640 = O0; /1 begi n 40byte sequence

dunmy = spi _i o(SPI _READ) ;

dunmy = spi_io((byte) (adr >> 8)); /1 high byte of adr
dunmy = spi _io((byte) adr); /1 low byte of address
dat = spi _i o(dummy); /1 data

CS_PIN 25640 = 1;

return(dat);

byte spi _io(byte spi_byte)
{

byte n;

for(n=0; n<8; n++)

{

/1 now read back the data

13

if (spi_byte & 0x80) /* nobst sign bit first */

SDO PIN = 1;
}
el se

SDO PIN = 0;
}
SCK PIN = 1;

spi _byte = (spi_byte << 1) | SDI _PIN,
SCK_PIN = 0;

}
return(spi_byte);

}

#i nclude <l cd_out.c>
Program 25 640 1.C.
This program is functionally the same as 25 640BB.C except that this program does use the PIC's SSP module.

In function _25 640_setup(), SSP moduleis configured as an SPI master with SCK running at f_osc / 64 (sspm3::sspm0
bits set to 0010). Theidle state of the clock is defined as being zero (ckp = 0), the SDO datais defined as appearing on a
positive clock transition (stat_cke = 1) and the SDI is to be read on the negative transition of the clock (stat_smp=1). As
with the bit-bang implementation, the directions of the SCK, SDO and SDI terminals must be configured and the state of
SCK must beinitialized to a zero when communicating with the 25L C640 EEPROM. |n addition, theidle state of the
clock is set to zero.

The equivalent function of the spi_io() function used in the bit-bang implementation isillustrated in the following snippet;

SSPBUF = spi _byte;
whi | e(!stat_bf) /* loop */
spi _byte = SSPBUF;

Note that the byte to be sent isloaded into SSPBUFF and it is automatically clocked out using the stat_cke parameter.
And, just aswith spi_io(), the byte received on SDI is clocked into SSPBUFF using the stat_smp bit as a definition of
when to sample. Note that the program loops until the buffer full (stat_bf) bit is at one indicating the receive is complete.

/1 25 640_1.C

/1

/1 1llustrates the use of the SSP nodule in interfacing with a 25LC640
/1 EEPROM using the SPI protocol. Illustrates single byte node.

/1

/1 Uses single byte wite and read. Wites 10 val ues begi nning at | ocation
/1 0x0700 and then reads back the val ues and di spl ays them on the LCD.
/1

/1 Pl C16F877 25LC640
/1

/1 RC5/SDO (term24) ---------mmomnmnon- > Sl (termb5)

/1 RCAISDI (term23) <---------mommonnon-- SO (term 2)

/1 RC3/SCK (term18) ------------------- > SCK (term 6)

/1 RB4/CS (term37) --------mmmmmmmm oo > /CS (term1l)

/1

/1

14

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '01
#case
#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

#defi ne SPI _WREN 0x06
#define SPI_WRI TE 0x02
#def i ne SPI _READ 0x03

void 25 640 setup_ SPI (void);
void _25 640 wite_byte(unsigned long adr, byte dat);
byte 25 640 read_byte(unsigned | ong adr);

voi d mai n(voi d)
{
byte n, dat;
unsi gned long adr

led_init();

r b4
r b5
trisbh4 = 0;
trisbh5 = 0;

1, /1 CS for 25LC640
1, /1 CS for TLC2543

25 640_setup_SPI();

I cd_cursor_pos(0, 0);
for (n=0, adr = 0x0700; n<10; n++, adr++)

25 640 wite_byte(adr, n+10); /1 wite 10, 11, 12, etc
lcd_char('!"); /1 to see that something is happening

}

for (n=0, adr = 0x0700; n<10; n++, adr++)
{
dat = _25 640 _read_byte(adr); /1 now read back the data
lcd clr_line(l);
| cd_dec_byte(dat, 2); /1 and displ ay
del ay_ns(250);
}

whi | e(1) ; /1 continual |oop
}

void _25 640 setup_SPI (voi d)
{
sspen
sspen
sspnB

n
-

0; sspm2 = 0; sspnl = 1; sspnD = 0; // Configure as SPI Master, fosc / 64

15

ckp = 0; /1 idle state for clock is zero

stat _cke = 1; /1 data transmitted on rising edge
stat_snp =1 /1 input data sanpled at end of clock pul se
portc3 = O;
trisc3 = 0; /1 SCK as output O
triscd = 1; /1 SDI as input
trisch = 0; /1 SDO as out put
}
void 25 640 wite byte(unsigned |long adr, byte dat)
{
byte dumy;
rb4a = 0; /1 CS | ow
SSPBUF = SPI _WREN
whi | e(!stat_bf) /* loop */
dunmy = SSPBUF
rb4a = 1; /1 CS high - end of WREN sequence
rb4a = 0; /1 begin another session - 4 bytes
SSPBUF = SPI _WRI TE;
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;
SSPBUF = (byte) (adr >> 8); /1 high byte of adr
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;
SSPBUF = (byte) (adr); /1 low byte of adr
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;
SSPBUF = dat; // data
whi | e(!stat_bf) /* loop */
dunmy = SSPBUF
rb4a = 1;
delay ms(5); // allowtine for programm ng EEPROM
}
byte 25 640 read_byte(unsigned | ong adr)
{

byte high_adr, |ow adr, dunmy, dat;
rb4a = 0; /1 CS | ow

SSPBUF = SPI _READ

whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF

hi gh_adr = adr >> 8;

SSPBUF = high_adr; // high byte of adr

whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

| ow adr = adr;
SSPBUF = low adr; // |low byte of adr
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

SSPBUF = dumy;

whi | e(!stat_bf) /* loop */ ;
dat SSPBUF;

rb4 1;

return(dat);

}

#i nclude <l cd_out.c>

Program 25 640 2.C.
This program extends on the previous to illustrate a sequential write and read..

In writing data, the EEPROM iswrite enabled by sending the WREN command. This sequenceisfollowed with sending
the WRITE command, the high and low bytes of the EEPROM address and then each of the eight data bytes. In reading
data, the READ command is sent, followed by the high and low bytes of the address and the eight bits are then read.

Up to 32 bytes may be written or read. However, all bytes must reside on the same 32 byte page. Thus, 0x07€0 would be
avalid start address for a 32 byte sequential write. Addresses 0x07el or 0x7f0 would not be valid.

Note that in main(), | used two const arrays. One limitation of the CCS compiler is that pointers to const arrays may not
be passed to afunction. Thus, | simply copied the const array to a conventional RAM array and then called the function
to write the data to the EEPROM.

Thereis one detail in function display() that is worthy of note; the use of the mod (%) operator to advance the cursor to
the next line. Although thislooks nice and compact in C, the mod operator, particularly with long ints, uses a good deal
of program memory as the implementation is one of dividing and then taking the result and multiplying and then
subtracting this from the quantity;

(n+l) / 4
q* 4;

q
m
mod = (n+l) — m

(o I

Program memory is not an issue until you run out of it. However, amore efficient implementation of the advancing of the
cursor which really doesn’t sacrifice clarity;

voi d display(byte *read_dat, byte num bytes)
{

byte m n, line = 0;

lcd _clr_line(0);

for (n=0, m= 0; n<num bytes; n++, mt+)

if ((m==4) /1 four values per |ine

17

m = 0,
++l i ne;
lcd _clr_line(line);

}
| cd_hex_byte(read dat[n]);

[cd_char (" ");

}
}
/1 25_640_2.C
/1
/1 1llustrates the use of the SSP nodule in interfacing with a 25LC640
/1 EEPROM using the SPI protocol. Illustrates block wite and read node.
/1

/1 Wites one block of eight bytes beginning to | ocations beginning at
/1 0x0700 and anot her block to 0x0708. Then reads back the val ues and

/1 displays themon the LCD.

/1

/1 Pl C16F877 25L.C640
/1

/1 RC5/SDO (term24) ---------mm-mnmnnon- > Sl (termb5)

/1 RCAISDI (term23) <---------mommonnon-- SO (term 2)

/1 RC3/SCK (term18) ------------------- > SCK (term 6)

/1 RB4/CS (term37) --------mmmmmmmm oo > /CS (term1l)

/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

#defi ne SPI _WREN 0x06
#defi ne SPI _WRI TE 0x02
#def i ne SPI _READ 0x03

void _25 640 _setup_SPI (voi d);

void _25 640 wite_seq_bytes(unsigned |ong adr

void 25 640 read_seq_byt es(unsi gned | ong adr
voi d display(byte *read_dat, byte num bytes);
voi d mai n(voi d)

{
byte dat _array[8], n;

byte const a[8] = {0x07, 0x06, 0x05, 0x04,
byte const b[8] = {0x17, 0x16, O0x15, O0x14,
lecd init();

rb4 = 1; /1 CS for 25LC640

‘01

byte *wite_dat, byte num bytes);
byte *read_dat, byte num bytes);

0x02, 0x01, 0x00};
0x12, Ox11, O0x10};

18

}

rbs = 1; /1 CS for TLC2543
trisbh4
trisbb

0;
O.

25 640 _setup_SPI();
for(n=0; n<8; n++) /1 wite a block of eight bytes

dat _array[n] = a[n];

}
25 640 write_seq _bytes(0x700, dat_array, 8);
for(n=0; n<8; n++) /1 write another bl ock

dat _array[n] = a[n];

}

25 640 _wite_seq_bytes(0x708, dat_array, 8); [// wite another
25 640 _read_seq_bytes(0x700, dat_array, 8); // read each block and display
di spl ay(dat _array, 8);

25 640 _read_seq_bytes(0x708, dat_array, 8);
di spl ay(dat _array, 8);

whi | e(1)

void 25 640 setup_SPI (voi d)

{

}

sspen 0;

sspen 1;

sspnB 0; sspm2 = 0; sspnl = 1; sspnD = 0; // Configure as SPI Master, fosc / 64
ckp = 0O; /1 idle state for clock is zero

1; /! data transmitted on rising edge

1;

/1 input data sanpled at end of clock pul se

e

; /1 SCK as output O

trisc4
trisch

1; /1 SDI as input
0; /1 SDO as out put

void _25 640 wite_seq_bytes(unsigned |ong adr, byte *wite_dat, byte num bytes)

{

byte dumry, n;
rb4a = 0; /1 CS low - begin WREN sequence
SSPBUF = SPI _WREN

whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

19

rb4a 1;

rb4 = 0;

SSPBUF = SPI _WRI TE;
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

SSPBUF = (byte) (adr >> 8); /1 high byte of adr
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

SSPBUF = (byte) (adr); /1 low byte of adr
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

for (n=0; n<num bytes; n++)

{
SSPBUF = wite dat[n]; // data
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

}

rb4a = 1; /1 end of sequence

delay ms(5); // allowtine for progranmm ng

}
void _25 640 read_seq_bytes(int adr, byte *read_dat, byte num bytes)
byte high_adr, |ow adr, dunmy, n;
rb4a = 0; /1 CS low - begin sequence
SSPBUF = SPI _READ
whi | e(!stat _bf) /* loop */ ;
dunmy = SSPBUF;
hi gh_adr = adr >> 8§;
SSPBUF = high_adr; // high byte of ad
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF
| ow_adr = adr;
SSPBUF = low adr; // |low byte of adr
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF
for (n=0; n<num bytes; n++)
SSPBUF = dumy;
whi | e(!stat_bf) /* loop */
read_dat[n] = SSPBUF;

rb4a = 1; /1 end of sequence

}

voi d display(byte *read_dat, byte num bytes)

{
byte n, line = 0;
lcd clr_Iine(0);
for (n=0; n<num bytes; n++)
{
| cd_hex_byte(read_dat[n]);
lcd _char(' ");
if (((n+tl)%) == 0) /1 four values per |ine
{
++l i ne;
lcd clr_line(line);
}
}
}

#i nclude <l cd_out.c>

Program 2543 1.C.

Thisroutine illustrates an interface with a T!W.Fmrq TLC2543, 11-channel, 12-bit A/D.

A command byte of the form;

WAV XX Y Z

where WWW isthe channel (0-11), XX isthe datalength (11 for 16 bits) , Y iseither most (0) or least (1) significant bit
first and Z indicates whether the dataisto be returned in unipolar or bipolar format.

Thus, for a specific channel;

command = (channel << 4) | 0xOc | bipol ar
In function ad_meas(), the command byte is sent, followed by a dummy byte so as to make the sequence 16 bytes long.
Note that at the same time this command is being sent to the TLC2543, the result of the previous command is being

returned. However, in this context, we have no way of knowing what the previous command was and the dataisignored.

The datais then fetched in the next two byte sequence. The 12 data bits are the first 12 bits returned and thus the result
could be calculated as;

ad_val = high_byte;
ad val = (ad_val << 8) | |ow byte; /1 put the two bytes together
ad val = ad_val >> 4 /1 nove to low 12-bits

| opted for amore efficient, but less clear implementation;
ad_val = (((unsigned long) high_byte) << 4) | (low_byte >> 4);
With the bipolar command bit set to zero the result isin the range of 0x000 — Oxfff with 0x800 being the midpoint. With

the bipolar bit set to a one, the midpoint is 0x000 and extends up to 0x7ff, and down from the midpoint from 0x000 to
Oxfff and down to 0x800. Thus, itsisatwao’s complement representation relative to the midpoint.

21

http://www.ti.com/

/1 2543_1.C

/1

/1 1llustrates interfacing with a Tl TLC2543 11-channel 12-bit A/D using the PIC s
// SSP nodule in the SPI node.

/1

/1 Perfornms an A/ D unipol ar nmeasurenent on Channel 0 and a bipolar nmeasurement on Ch 1
/1 and displays the result on the LCD

/1

/1 Pl C16F877 TLC2543
/1

/1 RC5/SDO (term24) --------------- DIN (term 17)

/1 RCA/ISDI (term23) <-------------- DOUT (term 16)

/1 RC3/SCK (term18) --------------- CLK (term 18)

/1 RB5 (term38) ------------------ > /CS (term 15

/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Jan, '01
#case
#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

unsi gned | ong ad_mneas(byte channel, byte bipolar);
voi d di spl ay(byte channel, unsigned |long ad val);

voi d mai n(voi d)

{
byt e channel
unsi gned | ong ad_val;
lecd init();
whi |l e(1)
{
channel = 0;
ad_val = ad_neas(channel, 0); // unipolar nmeasurenment on Ch 0O
di spl ay(channel , ad_val);
channel = 1;
ad_val = ad_neas(channel, 1); // bipolar neasurement on Ch 1
di spl ay(channel, ad_val);
del ay_ns(1000);
}
}
unsi gned | ong ad_neas(byte channel, byte bipol ar)
{

byte hi gh_byte, |ow byte, dummy;
unsi gned | ong ad_val;

sspen
sspen
sspnB
ckp =

st at cke
stat_snp

I mnn
-

0; sspm2 = 0; sspnl = 1; sspnD = 0; // Configure as SPlI Master, fosc / 64
/1 idle state for clock is zero

1; /1 data transmitted on rising edge

1; /1 input data sanpled at end of clock pul se

Q

portc3
trisc3

no
ee

/1 SCK as output O

trisc4d
trisch

1; /1 SDI as input
0; /1 SDO as out put

rbs5 = 1;
trisbh5 = 0; /1 be sure CS is high

/'l wite the command
rb5 = 0; /1 bring CS | ow
del ay_10us(10);

SSPBUF = (channel << 4) | (0x0c + b|poIar)
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF

SSPBUF = 0x00; /1 send a dumy byte
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

rbs5 = 1; /1 CS high
/1 now read the result

rbs5 = 0; /1 bring CS | ow
del ay_10us(10);

SSPBUF = 0x00; /1 send a dumy byte
whi | e(!stat _bf) /* loop */ ;
hi gh_byte = SSPBUF;

SSPBUF = 0x00; /1 send a dummy byte

whi | e(!stat_bf) /* loop */ ;

| ow_byte = SSPBUF;

rbs5 = 1; /1 CS high

ad val = (((unsigned long) high byte) << 4) | (low byte >> 4);
return(ad_val);

}

voi d di spl ay(byte channel, unsigned |ong ad_val)

lcd clr_line(channel);
printf(lcd _char, "% %l x", channel, ad val);

}

#i nclude <l cd_out.c>

Program 2543 2.C.

This program illustrates how multiple measurements may be rapidly performed with a command for a new measurement
being sent to the TLC2543 while at the same time fetching the result of the previous command.

Note that in performing four measurements, five two-byte sequences are required. On the first sequence, the command is
sent, but the result isignored. On the fifth sequence, the command has no meaning but is executed to fetch the fourth
measurement.

In developing this routine | noted a very troubling deficiency with the CCS complier; the inability to handle arrays of
longsin afunction.

Theoriginal code was,

m=n — 1;
ad vals[m = ad_val;

where nisinthe range of 1 to 4 and thusmisin the range of O to 3.

The problem was that the address |ocation was hot advancing by two bytes to accommodate each long, but rather by a
single byte. This had me going for many hours and | am surprised that | have never seen this behavior prior to thistime.

| did find awork around in incrementing the pointer;

++ad_val s
*ad_vals = ad_val;

Thisdid work. Inincrementing the pointer, it does advance by the correct two bytes to accommodate each long.

The version (2.686) of PCM | am currently using is more than ayear old. Hopefully, this has been corrected as bugsin
such fundamental s are troubling.

/1 2543 2.C

/1

/1 1llustrates interfacing with a Tl TLC2543 11-channel 12-bit A/D using the PIC s
/1l SSP module in the SPI nobde.

/1

/1 Performs a sequence of A/ D measurenents on specified channels (array channels[]) with
/1 specified polarities (array polarities[]). The results are displayed on the LCD

/1

/1 This is an exanmple of how the TLC2543 may be configured for the next A/ D neasurenent
/1 while at the sane tinme receiving the result of the previous conmmand.

/1

/1

/1 Pl C16F877 TLC2543
/1

/1 RC5/SDO (term24) --------------- DIN (term 17)

/1 RCA/ISDI (term23) <-------------- DOUT (term 16)

/1 RC3/SCK (term18) --------------- CLK (term 18)

/1 RB5 (term38) ------------------ > /CS (term 15

/1

/1 Copyright, Peter H Anderson, Baltinmore, MD, Jan, '01

#case

24

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE 0O

void nmult_ad neas(byte *channels, byte *polarities, long *ad_vals, byte num channel s);
voi d display(byte *channels, long *ad_vals, byte num channels);

#defi ne NUM_CHANNELS 4

voi d mai n(voi d)

{
byt e channel s| NUM CHANNELS] = {0, 1, 3, 4};
byte pol arities[NUM CHANNELS] = {0, 1, 0, O0};
| ong ad_val s[NUM_CHANNELS]

led_init();
whi T e(1)

mul t _ad_neas(channel s, polarities, ad_vals, NUM CHANNELS)
di spl ay(channel s, ad_vals, NUM CHANNELS)
del ay_ns(1000);

}

voi d nult_ad_neas(byte *channels, byte *polarities, long *ad_vals, byte num channel s)
{

byte high _byte, |ow byte, m n;

unsi gned | ong ad_val ;

sspen 0;

sspen 1;

sspnB 0; sspnm2 = 0; sspnl = 1; sspnD = 0; // Configure as SPI Master, fosc / 64

ckp = 0O; /1 idle state for clock is zero

stat _cke 1; /! data transmitted on rising edge

stat_snp 1; /1 input data sanpled at end of clock pul se

o

portc3
trisc3 0; /1 SCK as output O

e

trisc4
trisch

1; /1 SDI as input
/1 SDO as out put

non
L

rbs =1;
trisbb

n
o

/1 be sure CS is high
for (n=0; n<num channel s+1; n++)
{ rbs5 = 0; /1 CS | ow
del ay_10us(10);
i f (n==num _channel s) /1l if it is the |ast neas

SSPBUF = 0x00; // dunmy

25

}

el se

SSPBUF = (channels[n] << 4) | (0xOc + polarities[n]);
}

whi | e(!stat_bf) /* loop */ ;
hi gh_byte = SSPBUF;

SSPBUF = 0x00; /1 send a dummy byte
whi | e(!stat_bf) /* loop */ ;
| ow_byte = SSPBUF;

rbs5 = 1; /1 CS high
if (n!=0) /[l if it is not the first
{
ad_val = (((unsigned long) high_byte) << 4) | (low_byte >> 4);
*ad vals = ad val;
++ad_val s; [**xxxxkk Gee fext *rrrxxx
}
}
}
voi d display(byte *channels, long *ad vals, byte num channels)
{
byte n;
for (n=0; n<num channel s; n++)
lcd clr_line(n);
printf(lcd_char, "% %l x", channels[n], *ad_vals);
++ad_vals' // kkhkkkkhkkk*k See text *kkhkkkkhkk*k
}
}

#i nclude <l cd_out.c>

Program 3208 1.C.

The MCP320X family of A/D converters are relatively new offerings by !-3 The MCP3208 8-channel 12-bit A/D
is somewhat |ess expensive than the TLC2543, about $5.00.

The device may be configured for either single ended measurements or for differential measurements between channels.

For single ended measurements, the five command bits consist of

11 CCC

where CCC is the specific channel.

For differential measurements the five command bits are;

10CCP

26

http://www.microchip.com/

Where CC isthe channel pair and Pisthe polarity. For example Channel 6 relative to Channel 7 is channd pair 3 with a
polarity of O.

Life becomes interesting, as these five bits are split between two bytes. The three most significant command bits are the
lowest three bits of the first byte and the lowest two bits are the highest two bits or the second byte.

Thus for single ended measurements;
conmand = 0x04 + 0x02 + ((channel >> 2) & 0x01); /1 first byte

conmand (channel & 0x03) << 6; /1 next byte - lowtwo bits of channel are
/1 highest two bits

For differential measurements;

conmmand
conmmand

0x04 + 0x00 + (channel >> 1) & 0x01; // 10 and high bit of channe
(((channel & 0x01) << 1) | polarity) << 6; [/ next byte

Unlike the TLC2543, the MCP returns the result in the same two byte sequence.

/] 3208_1.C
/1
/1 1llustrates interfacing with a M crochip MCP3208 8-channel 12-bit A/D. Perforns

/1 AID neasurenments on Ch O and Ch 1 and differential nmeasurenents ChO+ relative to Ch 1
/1 and Chl+ relative to Ch 0. Displays results to LCD

11
/1 RC5/SDO (term24) ------------- > DIN (11)
/1 RCA/SDI (term23) <------------- DOUT (12)
I/l RC3/SCK (term18) ------------- > CLK (13)
// RB3 (term36) ----------------- > /CS (10)
11

/1 Copyright, Peter H Anderson, Baltinmore, MD, Jan, '01
#case
#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

unsi gned | ong ad_mneas_si ngl e_end(byte channel);
unsi gned long ad_neas_diff(byte channel, byte polarity);

voi d display(byte line, unsigned |long ad_val);
voi d mai n(voi d)

{

byt e channel
unsi gned | ong ad_val ;

lcd_init();
whi | e(1)
{

27

}

ad_val = ad_neas_single_end(0); /1 single end nmeasurenent on Ch O
di spl ay(0, ad_val);

ad_val = ad_neas_single_end(1); /1 and Ch 1
di splay(1, ad_val);

ad_val = ad_neas_diff(0, 0);
/1 differential between ChO and Chl - Ch O nore positive
di splay(2, ad_val);

ad val = ad_neas_diff(0, 1); /1 differential - Ch 1 nore postive
di splay(3, ad_val);

del ay_ms(3000) ;

unsi gned | ong ad_mneas_si ngl e_end(byte channel)

{

byte command, dummy, high byte, |ow byte;
unsi gned | ong ad_val;

sspen 0;

sspen 1;

sspnB 0; sspm2 = 0; sspnl = 1; sspnD = 0; // Configure as SPI Master, fosc / 64
ckp = 1; /1 idle state for clock is zero

0; /1 data transmitted on rising edge

1; /1 input data sanpled at end of clock pul se

n
—-
@
=

I

o
=
@

I

1
0; /1 SCK as output O

trisc4
trisch

1; /1 SDI as input
0; /1 SDO as out put

rb3 =1;

trisbl 0; /1 be sure CS is high

rb3 = 0;
del ay_10us(10);

conmand = 0x04 + 0x02 + ((channel >> 2) & 0x01);

SSPBUF = conmand;
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;

conmand = (channel & 0x03) << 6; /1 lowtwo bits of channe

SSPBUF = conmand;
whi | e(!stat _bf) /* loop */ ;
hi gh_byte = SSPBUF;

SSPBUF = 0x00;
whi | e(!stat_bf) /* loop */ ;
| ow_byte = SSPBUF;

28

rb3 = 1;

ad_val = high_byte & 0OxOf;

ad_val = (ad_val << 8) | |ow_ byte;
return(ad_val);
}
unsi gned |l ong ad_mneas_diff(byte channel, byte polarity)
{
byte command, dummy, high byte, |ow byte;
unsi gned | ong ad_val;
sspen = 0;
sspen = 1,
sspnB = 0; sspnR = 0; sspml = 1; sspnD = 0; // Configure as SPI Master, fosc / 64
ckp = 1; /1 idle state for clock is zero
stat _cke = 0; /! data transmitted on rising edge
stat_snp = 1; /1 input data sanpled at end of clock pul se
portc3 = 1;
trisc3 = 0; /1 SCK as output O
triscd = 1; /1 SDI as input
trisch = 0; /1 SDO as out put
rb3 = 1;
trish3 = 0; /1 be sure CS is high
rb3 = 0;
del ay_10us(10);
conmand = 0x04 + 0x00 + (channel >> 1) & 0x01
SSPBUF = comand;
whi | e(!stat_bf) /* loop */ ;
dunmy = SSPBUF;
conmand = (((channel & 0x01) << 1) | polarity) << 6;
/1 low bit of channel and polarity
SSPBUF = conmand;
whi | e(!stat_bf) /* loop */ ;
hi gh_byte = SSPBUF;
SSPBUF = 0x00;
whi | e(!stat_bf) /* loop */ ;
| ow _byte = SSPBUF;
rb3 = 1;
ad_val = high_byte & 0OxOf;
ad val = (ad_val << 8) | |ow byte;
return(ad_val);
}

voi d display(byte line, unsigned |long ad _val)

29

lcd clr_line(line);
printf(lcd _char, "%l x", ad_val);
}

#i nclude <l cd_out.c>
Program 7219 1.C.

The @AX 7219 i|s capabl e of interfacing with up to eight 7-segment plus decimal point common anode LEDs. The theory
of the deviceisthat the state of the eight anodes to display the desired digit is output to a common busto all 7-segment
LEDs and the cathode on the that display is brought low. The MAX7219 then moves to the next digit, etc. Thus, only a
single display is on at one time with the MAX 7219 rapidly moving from one display to the next.

The MAX7219 consists of registers“0—f". Registers“1—8" are associated with the eight display devices, “9” with the
decoding of the data, “a’ with the intensity, “b” with the scan limit (number of displays), “c” with shutdown and “f” with
LED test.

Note that no external series limiting resistors are required. The current is controlled with asingle resistor and the intensity
register.

Thus, each transfer to the MAX 7219 consists of two bytes; the register to be written followed by the data. Note that no
dataisreturned by the MAX72109.

Thisroutine uses “ Code B” decoding. Thusto display the character “8", the datais simply 0x08. Data values 0x0a—
OxOf display the characters“-“, “E”, “H", “L", “P” and “blank”, respectively.

The alternative to Code B decoding is to write the actual segments as“0111 1111” (Ox7f) where all segments except the
decimal point are operated in displaying the character “8”. This permits a user to define any character, at least within the
limits of what one can do with seven segments.

Note that you might use a cadmium sulfide resistor in avoltage divider arrangement and use an A/D converter to control
the intensity so as to compensate for ambient light.

As an aside, one might use aMAX7219 to control up to 64 discrete LEDs and use non-code B decoding to generate al
manner of fancy patterns. (There are Christmas Star packages on the market that use aMAX 7219 and a handful of
conventional LEDSs costing pennies apiece). |f your spouse wasn't al that impressed with you finally getting an LED to
wink after several hundred dollars and many days, they may feel you are making progressif you offer up 64 LEDs or
extend to two MAX7219sto 128 that write their name.

/] 7219 _1.C

/1

/1 1llustrates the use of a MAX7219 8-digit LED driver to control four
/1 common cat hode 7-segnment LEDs.

/1

/1 Sets up MAX7219 for code B decoding (4-bit), blanks all digits and displays 0 - 15
/1 on least significant LED display.

/1

/1 Displays 995 through 1005 with | eading zero suppression

/1

/1 Pl C16F877 MAX7219

/1

/1 RC5/SDO (term24) ---------mmomnamnonn >DIN (term 1)

/1 RCA/SDI (term 23) <------

30

http://www.maxim-ic.com/

/1 RC3/SCK (term18) ------------------- >CLK (term 13)
/1 RB2/CS (term35) --------mommommamom >/CS (term 12)

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Jan, '01

#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

#define TRUE !0
#defi ne FALSE O

void 7219 dec_display_unsi gned(unsigned long v, byte zero_suppression);
void 7219 blank_all (void);

void _7219 setup(void);

void _7219 shut down(void);

void 7219 display_4(byte *patts);
void 7219 digit_display(byte digit _num byte d);

void _7219 out(unsigned |ong d);

#defi ne NO_OP 0x0000
#def i ne DECODE_MODE 0x0900
#define I NTENSI TY 0x0a00
#define SCAN LIMT 0x0b00
#def i ne SHUT _DOWN 0x0c00
#defi ne DI SP_TEST 0x0f 00

#defi ne BLANK OxOf
#defi ne M NUS 0x0Oa /1 Code B for a mnus sign

voi d mai n(voi d)

{

int n;
unsi gned | ong v;

whi | e(1)
{
7219 _setup(); /1 turn on, code B decoding, nediumintensity, 4 digits

7219 blank_all();
for (n=0; n<16; n++)

{
7219 digit_display(0, n);
/1 display each of the characters on | east signif display
del ay_ms(1000);
}
for (n=0; n<l10; n++) /1 display the nunbers 995 - 1005
v = 995 + n;
7219 dec_di spl ay_unsi gned(v, 1); /1 leading zero suppression on

del ay_ns(1000);

31

Vo
/1

{

Vo

d 7219 dec_di spl ay_unsi gned(unsi gned |ong v, byte zero_suppression)

| eadi ng zero suppression

byte d, digits[4];

d = v/1000; /1 display the nunber of thousands

if((d) || (!zero_suppression))

/1 if the digit is not zero ORif there is no zero suppression

digits[3] = d;

zero_suppressi on = 0; /1 no zero suppression
}
else // dis zero and zero suppression
{
di gi ts[3] = BLANK;
}
v = v % 1000;
d =v / 100; /1 display the nunmber of hundreds
if((d) || (!zero_suppression))
digits[2] = d;
zero_suppression = 0;
}
el se
di gits[2] = BLANK;
}
v = v % 100;
d =v / 10; /1 tens
if((d) || (!zero_suppression))
{
digits[1l] = d;
el se
{
di gits[1l] = BLANK;
}
v = Vv %10;
d = v; /] units

digits[0] = d:
7219 display_4(digits);
d 7219 blank_all (void)

byte n, digits[4];
for(n=0; n<4; n++)

di gi t s[n] =BLANK;

32

}

VO

{

VO

Vo

Vo

Vo

7219 display_4(digits);

d 7219 display_4(int *patts) /1 display content of patts

byte n;
for(n=0; n<4; n++)

7219 _digit_display(n, patts[n]);

d 7219 digit_display(byte digit_num byte d)
/1 display d on display digit_num

| ong v;
v = ((long) (digit_ num+ 1) << 8) | d; // display nunber is in high byte
_ 7219 out(v);

d 7219 setup(void)

sspen = 0;

sspen = 1;

sspnB = 0; sspnR = 0; sspml = 1; sspnD = 0; // Configure as SPI Master, fosc / 64
ckp = 0O; /1 idle state for clock is zero
stat _cke = 1; /! data transmitted on rising edge
stat_snp = 1; /1 not really necessary in this application
portc3 = O;

trisc3 = 0; /1 SCK as output O

triscd = 1; /1 SDI as input

trisch = 0; /1 SDO as out put

rb2 = 1;

trisb2 = 0; /1 be sure CS is high

7219 out (DI SP_TEST | 0x00); /1 nor mal

7219 out (SHUT_DOWN | 0x01); /1 take it out of |ow power node
7219 out (SCAN LIMT | 0x04); /1 4 digits

7219 _out (DECODE_MODE | Oxff); // code B decode
7219 out (I NTENSITY | 0x08); /1 mediumintensity

d 7219 shutdown(voi d)

_ 7219 out (SHUT_DOWN | 0x00); // turn it off

d 7219 out(unsigned | ong d)

byte dumy;

rb2 = 1;

trish2 = 0;

33

}

rb2 = 0; /1 bring CS | ow
del ay_10us(10);

SSPBUF = (byte) (d >> 8);
whi | e(!stat_bf) /* loop */
dunmy = SSPBUF;

SSPBUF = (byte) (d);
whi | e(!stat_bf) /* loop */
dunmy = SSPBUF;

rb2 = 1; /1 CS high

#i nclude <l cd_out.c>

